Notes

Lewis Acid-Promoted Living Anionic Polymerization of Alkyl Methacrylates Initiated with Aluminum Porphyrins. Importance of Steric Balance between a Nucleophile and a Lewis Acid

Hiroshi Sugimoto,† Takuzo Aida, and Shohei Inoue*

Department of Synthetic Chemistry, Faculty of Engineering, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan

Received January 19, 1994
Revised Manuscript Received March 21, 1994

Introduction

We have reported the Lewis acid-assisted, high-speed living anionic polymerization of methacrylic esters via (porphinato) aluminum enolates (5_m) as the nucleophilic growing species (Scheme 1),1 where the basic concept involves activation of monomer through coordination to a Lewis acid (Figure 1). A key importance in the methodology is how to suppress the undesired reaction between the nucleophile (5_m) and Lewis acid, leading to termination of polymerization. One of our approaches was to make use of sterically crowded Lewis acids such as methylaluminum bis(ortho-substituted phenolates). In the polymerization of methyl methacrylate initiated with methylaluminum tetraphenylporphine (2), these bulky Lewis acids serve as very effective accelerators without damaging the living character of polymerization, while ortho-nonsubstituted analogs and simple organoaluminum compounds such as trimethylaluminum cause termination.² The present paper focuses attention on the steric bulk of the nucleophile component (5_m), by using strategically designed aluminum porphyins and some other methacrylates, for the purpose of understanding the scope and limitation of this method (Figure 1).

Experimental Section

Materials. 5,10,15,20-Tetraphenylporphine was synthesized by Adler's method.³ Tetramesitylporphine [5,10,15,20-tetrakis(2',4',6'-trimethylphenyl)porphine] and 5,10,15,20-tetrakis(3',5'-di-tert-butylphenyl)porphine were synthesized by Lindsey's method.⁴ Etioporphyrin I (2,7,12,17-tetraethyl-3,8,13,18-tetramethylporphine) was synthesized from tert-butyl 4-ethyl-3,5-dimethylpyrrole-2-carboxylate, according to the literature method.⁵ These free bases were converted into the corresponding methylaluminum porphyrins (1-4) by reaction with trimethylaluminum.² Purification of monomers, solvents, and trialkylaluminum compounds was carried out according to the established methods.²

Polymerization. A typical example is given below for the polymerization of methyl methacrylate (MMA) initiated with 2 in the presence of triisobutylaluminum (i-Bu₃Al): To a 50-mL round-bottomed flask attached to a three-way stopcock, containing a CH₂Cl₂ solution (10 mL) of 2 (0.25 mmol), was added MMA (50 mmol, 5.4 mL) by a syringe in a nitrogen stream. The mixture was illuminated at 35 °C by a xenon arc light (300 W) through

1: R¹ = H, R² = Me, R³ = Et 2: R¹ = Ph, R² = R³ = H 3: R¹ = (2',4',6'-Me₃)Ph, R² = R³ = H 4: R¹ = (3',5'-Bu₂)Ph, R² = R³ = H

a filter to cut out light of wavelength shorter than 420 nm. After 2.5-h irradiation, i-Bu₃Al was added (3 equiv with respect to 2) at room temperature under diffuse light. An aliquot of the reaction mixture was periodically taken out by a syringe in a nitrogen stream and subjected to ¹H NMR and GPC analyses to determine the monomer conversion and average molecular weights of the produced polymer, respectively.

Polymerizations of MMA with other methylaluminum porphyrin-i-Bu₃Al systems and of ethyl methacrylate and isopropyl methacrylate with the 2-i-Bu₃Al system were carried out similarly to the above.

Measurements. GPC was performed at 40 °C on a Tosoh Model 8020 high-speed liquid chromatograph equipped with a differential refractometer detector, using THF as eluent. The molecular weight calibration curve was obtained by using standard polystyrenes. ¹H NMR measurements were performed in CDCl₃ at 22 °C using a JEOL type GSX-270 spectrometer.

Results and Discussion

Polymerization of methyl methacrylate (MMA) was carried out by using as initiators methylaluminum porphyrins with different porphyrin ligands (1-4) under irradiation ($\lambda > 420$ nm) at 35 °C. After 2.5 h (monomer conversion: 6-9%) the irradiation was stopped, and triisobutylaluminum (i-Bu₂Al) was added at room temperature to the system ([initiator]₀/[MMA]₀/[i-Bu₃Al]₀ = 1/200/3). As we have already reported, the polymerization of MMA initiated with methylaluminum tetraphenylporphine (2; Figure 2B) was accelerated at the early stage after the addition of i-Bu₃Al but soon terminated with a color change of the system from dark reddish purple characteristic of 5_m to the greenish purple typical of the alkylaluminum porphyrin family. The monomer conversion was increased from 9 to 63% in 10 min after the addition of i-Bu₃Al, but it was no longer increased upon prolonged reaction for 30 min (run 2, Table 1). The M_n of the polymer formed (20 200), as estimated by GPC, was higher than that expected from the ratio of the reacted MMA to 2 (12 800), and the MWD was broad $(M_w/M_n =$ 1.41). When a sterically less crowded initiator such as methylaluminum etioporphyrin I (1; Figure 2A) was used under otherwise identical conditions, the polymerization stopped immediately after the addition of i-Bu₃Al (run 1). Thus, in these two cases, the undesired reaction (Scheme 2) takes place between the nucleophilic growing species (5_m) and i-Bu₃Al, leading to termination of chain growth. On the contrary, when methylaluminum tetramesitylpor-

[†] Postdoctoral Fellow of JSPS Fellowships for Japanese Junior Scientists.

Table 1. Polymerization of Alkyl Methacrylates Initiated with Methylaluminum Porphyrins (1-4) in the Presence of Trialkylaluminums (R'3Al)²

run	initiator	R'3Al	monomer	time ^b /min	conv ^c /%	$M_{ m n}{}^d$	$(M_{ m n,calc})^e$	$M_{ m w}/M_{ m n}^{d}$
1	1	i-Bu ₃ Al	MMA	0	9			
				10	11			
				30	12			
2f	2	i-Bu₃Al	MMA	0	6			
				10	63			
				30	64	20 200	$(12\ 800)$	1.41
3	3	Me_3Al	MMA	0	8			
				10	9			
				30	9			
4	3	$\mathbf{Et_3Al}$	MMA	0	8			
				10	28			
				30	28			
5	3	i-Bu ₃ Al	MMA	0	8			
				10	61			
				30	100	21 400	(20 000)	1.06
6	4	$i-Bu_3Al$	MMA	0	7			
				10	53			
				30	53	11 100	(10 600)	1.35
7	1	i-Bu ₃ Al	EMA	0	5	22.122	(00.000)	
			77.64	10	100	26 400	$(22\ 800)$	1.19
8	1	i-Bu₃Al	PMA	0	12		(0.000)	
				10	100	27 400	$(25\ 600)$	1.18

^a In CH₂Cl₂ under nitrogen, [initiator]₀/[monomer]₀/[R'₃Al]₀ = 1/200/3, [initiator]₀ = 16.2 mM. ^b After addition of R'₃Al. ^c Determined by ¹H NMR analysis of the reaction mixture. ^d Estimated by GPC based on polystyrene standards. ^e $M_{n,calc}$ = molecular weight of monomer × ([monomer]₀/[initiator]₀) × (conversion)/100). ^f Data from ref 2.

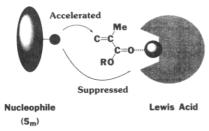


Figure 1. Basic concept of the Lewis acid-assisted, high-speed living anionic polymerization.

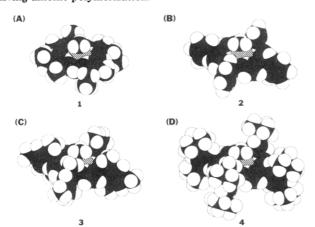
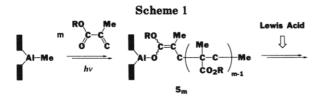



Figure 2. Space-filling representations of methylaluminum porphyrins (1-4).

phine (3; Figure 2C), a sterically more crowded initiator than 2, was used, the polymerization proceeded from 8 to 61% monomer conversion in 10 min after the addition of i-Bu₃Al and reached complete monomer consumption within 30 min (run 5). In this case, the color of the system

characteristic of 5_m was retained throughout the polymerization. The M_n of the produced polymer (21 400) was very close to the expected value (20 000) and the $M_{\rm w}/M_{\rm n}$ was 1.06, indicating the living character of polymerization. Thus, the methyl groups at the ortho positions of the peripheral phenyl rings in 3 are considered to serve as the steric barrier for the access of i-Bu₃Al to the nucleophilic center. Nevertheless, the barrier seems not sufficient when less bulky trimethylaluminum (Me₃Al) and triethylaluminum (Et₃Al) are used as Lewis acids (runs 3 and 4). In connection with this observation, when methylaluminum tetraphenylporphyrin carrying tert-butyl groups at the meta positions (4; Figure 2D) was used in place of 3, the polymerization in the presence of i-Bu₃Al was terminated at 53% monomer conversion, giving a polymer with broader MWD $(M_w/M_n = 1.35)$ (run 6). Thus, even bulky tertbutyl groups, when introduced at the meta positions of the phenyl rings of 2, are not able to form the effective barrier to suppress the undesired reaction (Scheme 2).

The enolate species (5_m), derived from methacrylates with bulkier ester groups than MMA, are sterically protected against the access of i-Bu₃Al under the abovementioned conditions, even when the porphyrin moiety is ortho-nonsubstituted tetraphenylporphine. An example is shown by the polymerization of ethyl methacrylate (EMA) using 2 as initiator ([initiator]₀/[EMA]₀/[i-Bu₃- $All_0 = 1/200/3$), where the polymerization proceeded to 100% monomer conversion in 10 min after the addition of i-Bu₃Al to the system. The M_n of the produced polymer (26 500) was close the expected value (22 800), and the MWD was narrow $(M_w/M_n = 1.19)$ (run 7). A similar result was obtained for the polymerization of isopropyl methacrylate (PMA) with the 2-i-Bu₃Al system, which quantitatively gave a narrow MWD polymethacrylate with a predicted M_n (run 8).

In conclusion, not only the steric bulk of the Lewis acid (monomer activator) but also that of the nucleophilic growing species (5_m) is important for realizing the Lewis acid-assisted, controlled anionic polymerization, and our basic concept involving a sterically separated nucleophileelectrophile model is clearly supported.

Acknowledgment. This work was partly supported by Grant-in-Aid No. 04204006 for Scientific Research on Priority Area, the Ministry of Education, Science and Culture, Japan. T.A. also thanks Kanagawa Academy of Science and Technology for financial support.

References and Notes

- (1) Kuroki, M.; Watanabe, T.; Aida, T.; Inoue, S. J. Am. Chem. Soc. 1991, 113, 5903
- Sugimoto, H.; Kuroki, M.; Watanabe, T.; Kawamura, C.; Aida,
- T.; Inoue, S. Macromolecules 1993, 26, 3403.

 (3) Adler, A. D.; Longo, F. R.; Finarelli, J. D.; Goldmacher, J.; Assour, J.; Korsakoff, L. J. Org. Chem. 1967, 32, 476.

 (4) Lindsey, J. S.; Hsu, H. C.; Schreiman, I. C. Tetrahedron
- Lett. 1986, 27, 4969. (b) Wagner, R. W.; Lawrence, D. S.; Lindsey, J. S. Tetrahedron Lett. 1986, 28, 3069. (c) Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.; Marguettaz,
- A. M. J. Org. Chem. 1987, 52, 827.
 (5) Barnett, C. H.; Smith, K. M. Porphyrins and Metalloporphyrins; Elsevier: New York, 1975; p 765.